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1. Introduction

One of the driving questions in arithmetic statistics is that of the distribution of ranks of
elliptic curves over global fields. This problem, along with the Cohen–Lenstra heuristics, which
conjecture the distribution of class groups of number fields, has motivated the lion’s share of
research in arithmetic statistics over the past two decades. Conjectures of Goldfeld and Katz–
Sarnak dating back to as early as 1979 state that 50% of elliptic curves overQ have rank 0 and that
the other 50% have rank 1 [13, 14]. These densities are conjectured to be insensitive towhether the
curves have been ordered by height, discriminant, or conductor.1 The Birch–Swinnerton-Dyer
conjecture, in conjunction with the generalized Riemann hypothesis, tell us that the average rank
of elliptic curves, when ordered by height, is finite and at most 2.3. However, until 2015, it was
not previously known that the average rank of elliptic curves is even finite.

For an elliptic curve over a global field 𝐾 , the theory of descent tells us that, given generators
for the weak Mordell–Weil group 𝐸 (𝐾)/𝑚𝐸 (𝐾), it is possible to compute generators for 𝐸 (𝐾).
The difficulty lies with the fact that there is no known, general method for computing genera-
tors of the weak Mordell–Weil group. Enter the theory of Selmer groups. Selmer groups, which
will be defined momentarily, are finite abelian groups associated to an isogeny of elliptic curves
whose sizes give upper bounds on the size of the weak Mordell–Weil group and thus the rank
of an elliptic curve. Despite their complexity, the advantage of working with Selmer groups is
that, often, their elements are in natural correspondence with orbits of certain families of homo-
geneous polynomials. These parametrizations, one of which is the main concern of this paper,
allow for the explicit computation of the average sizes of Selmer groups. In turn, these averages
give upper bounds for the average ranks of elliptic curves.

Because we did not define Selmer groups of isogenies in class, we give a brief discussion of
the requisite theory, adapted from Chapter X of Silverman’s book [18]. Let 𝐸 and 𝐸′ be elliptic
curves with an isogeny 𝜙 : 𝐸 → 𝐸′ between them, all defined over a global field 𝐾 . Take 𝐺𝐾 to
denote the absolute Galois group of 𝐾 . We have an exact sequence of 𝐺𝐾-modules

0 𝐸 [𝜙] 𝐸 𝐸′ 0𝜙

to which applying Galois cohomology yields the long exact sequence

0 𝐸 (𝐾) [𝜙] 𝐸 (𝐾) 𝐸′(𝐾)

𝐻1(𝐺𝐾 , 𝐸 ( [𝜙])) 𝐻1(𝐺𝐾 , 𝐸) 𝐻1(𝐺𝐾 , 𝐸
′) · · ·

𝜙

𝜕

𝜙

From this, we extract the following short exact sequence

(1) 0 𝐸′(𝐾)/𝜙(𝐸 (𝐾)) 𝐻1(𝐺𝐾 , 𝐸 [𝜙]) 𝐻1(𝐺𝐾 , 𝐸) [𝜙] 0.𝜕

1When we reference probabilities and averages, we mean the following. Let ℎ be a function from the isomorphism
classes of elliptic curves over Q (or any global field) to the integers (ℎ is called an ordering). The statements about
the densities of ranks of elliptic curves can be restated as follows: consider the isomorphism classes of elliptic curves
𝐸 over Q with |ℎ(𝐸) | < 𝑋 for some positive real number 𝑋 . For 𝐸𝑋 chosen uniformly at random from this set,

lim
𝑋→∞

P(rank(𝐸𝑋 (Q)) = 0) = 1
2
= lim

𝑋→∞
P(rank(𝐸𝑋 (Q)) = 1).

Similar remarks apply for the statements about average ranks of elliptic curves.
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For each nonarchimedean place 𝑣 of 𝐾 , choose an extension of 𝑣 to 𝐾 . Let 𝐾𝑣 denote the
completion of 𝐾 with respect to this extension, and let 𝐺𝑣 ⊂ 𝐺𝐾 be the corresponding decompo-
sition group. We know that 𝐺𝑣 acts on 𝐸 (𝐾𝑣) and 𝐸′(𝐾𝑣). Repeating the process outlined above
gives an exact sequence as in (1) where the Galois groups and fields have been replaced by their
local counterparts. Assembling all of these local considerations, we see that the restriction maps
on cohomology given by𝐺𝑣 ⊂ 𝐺𝐾 and 𝐸 (𝐾) ⊂ 𝐸 (𝐾𝑣) yield the following commutative diagram
with exact rows, where the products run over all nonarchimedean places of 𝐾 :

0 𝐸′(𝐾)/𝜙(𝐸 (𝐾)) 𝐻1(𝐺𝐾 , 𝐸 [𝜙]) 𝐻1(𝐺𝐾 , 𝐸) [𝜙] 0

0
∏
𝑣 𝐸

′(𝐾𝑣)/𝜙(𝐸 (𝐾𝑣))
∏
𝑣 𝐻

1(𝐺𝑣, 𝐸 [𝜙])
∏
𝑣 𝐻

1(𝐺𝑣, 𝐸) [𝜙] 0.

𝜕

𝜕

Our interest lies in computing the image of 𝐸′(𝐾)/𝜙(𝐸 (𝐾)) under the map 𝜕, or, equiv-
alently, the kernel of the map 𝐻1(𝐺𝐾 , 𝐸 [𝜙]) → 𝐻1(𝐺𝐾 , 𝐸) [𝜙]. By the theory of twists, the
problem of computing this kernel can be rephrased as the problem of determining whether cer-
tain principal homogeneous spaces (smooth curves 𝐶/𝐾 with a simply transitive group action
of 𝐸 on 𝐶 defined over 𝐾) have a 𝐾-rational point. Unfortunately, this is not always tractable.
However, determining the (local) kernel of 𝐻1(𝐺𝑣, 𝐸 [𝜙]) → 𝐻1(𝐺𝑣, 𝐸) [𝜙] is made possible by
Hensel’s lemma, since it requires only finite computation to check whether a curve has a point
in the finite ring O𝐾𝑣

/𝜋𝑒𝑣O𝐾𝑣
. Thus, we define the 𝜙-Selmer group of 𝐸/𝐾 to be the subgroup of

𝐻1(𝐺𝐾 , 𝐸 [𝜙]) given by

Sel𝜙 (𝐸) = ker

(
𝐻1(𝐺𝐾 , 𝐸 [𝜙]) →

∏
𝑣

𝐻1(𝐺𝑣, 𝐸) [𝜙]
)
.

That is, the 𝜙-Selmer group is the subgroup of 𝐻1(𝐺𝐾 , 𝐸 [𝜙]) consisting all “locally soluble”
cohomology classes, i.e., the cohomology classes of 𝐻1(𝐺𝐾 , 𝐸 [𝜙]) that are locally in the image
of the connecting map

𝜕𝑣 : 𝐸′(𝐾𝑣) → 𝐻1(𝐺𝑣, 𝐸 [𝜙])
for all archimedean places 𝑣. The Tate–Shafarevich group of 𝐸 over 𝐾 is defined as

X(𝐸) = ker

(
𝐻1(𝐺𝐾 , 𝐸) →

∏
𝑣

𝐻1(𝐺𝑣, 𝐸)
)
.

It is well-known that Sel𝜙 (𝐸) is finite and that Sel𝜙 (𝐸) and X(𝐸) [𝜙] fit into an exact sequence

0 𝐸′(𝐾)/𝜙(𝐸 (𝐾)) Sel𝜙 (𝐸) X(𝐸) [𝜙] 0.

From this exact sequence, we see that knowing the average size of Sel𝜙 (𝐸) implies upper bounds
on the size of 𝐸′(𝐾)/𝜙(𝐸 (𝐾)). Setting 𝐸′ = 𝐸 and 𝜙 = [2], for example, we see that Sel2(𝐸) is
an abelian 2-group of size 2𝑠 for some integer 𝑠 ≥ 0. Knowing the average size of 𝑠 then implies
immediately implies an upper bound on rank(𝐸 (𝐾)).

There have been significant advances in the last thirty years towards understanding the aver-
age sizes of Selmer groups of elliptic curves over a global field 𝐾 . Brumer showed that the average
rank of elliptic curves over F𝑞 (𝑡) is finite for 𝑞 ≥ 5, and this result was strengthened by de Jong,
who lowered the bound in question and extended these results for all 𝑞 [5, 11]. Later, Bhargava
and Shankar showed that the average size of 2-Selmer groups of elliptic curves overQ ordered by
height is 3, implying that their average rank is at most 1.5 [3], giving the first ever bound on ranks
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of elliptic curves over number fields. The goal of this paper is to give an expository account of a
paper of Bhargava, Elkies, and Shnidman, in which the authors prove results of a similar flavor
for 3-isogeny Selmer groups of elliptic curves with 𝑗-invariant 0 [2]. Our main focus will be the
parametrization that makes these results possible.

2. 3-isogenies of 𝑦2 = 𝑥3 + 𝑘
In the sequel, 𝐹 will always denote a field with char(𝐹) ∉ {2, 3}. For 𝑘 ∈ 𝐹∗, the elliptic

curve modeled by
𝐸𝑘 : 𝑦2 = 𝑥3 + 𝑘

has 𝑗-invariant 0, and, conversely an elliptic curve over 𝐹 with 𝑗-invariant zero is isomorphic to
𝐸𝑘 for some 𝑘 ∈ 𝐹∗. The isomorphism classes of the 𝐸𝑘 ’s are parametrized by 𝐹∗/𝐹∗6, as two
curves 𝐸𝑘 and 𝐸ℓ are isomorphic if and only if ℓ = 𝑚6𝑘 for some 𝑚 ∈ 𝐹∗. As usual, let 𝑂 denote
the point at infinity on 𝐸𝑘 . We see immediately (either from the group law or from computing
the flexes of 𝐸𝑘 ) that 𝑇 = (0,

√
𝑘) and −𝑇 = (0,−

√
𝑘) are two distinct 3-torsion points on 𝐸𝑘 . The

elliptic curve 𝐸𝑘 comes equipped with an isogeny 𝜙𝑘 : 𝐸𝑘 → 𝐸−27𝑘 , defined over 𝐹, given by

𝜙𝑘 (𝑥, 𝑦) =
(
𝑥3 + 4𝑘
𝑥2

,
𝑦(𝑥3 − 8𝑘)

𝑥3

)
;

there is an isogeny 𝜙𝑘 : 𝐸−27𝑘 → 𝐸36𝑘 given by

𝜙𝑘 (𝑥, 𝑦) =
(
𝑥3 − 108𝑘

9𝑥2
,
𝑦(𝑥3 + 216𝑘)

27𝑥3

)
.

Some algebra verifies that the multiplication-by-3 map [3] : 𝐸𝑘 → 𝐸𝑘 is equal to 𝜙𝑘 ◦ 𝜙𝑘 , so 𝜙𝑘
is a 3-isogeny with dual 𝜙𝑘 . Identifying 𝐸36𝑘 with 𝐸𝑘 via the map (𝑥, 𝑦) ↦→ (3−2𝑥, 3−3𝑦), we see
that 𝜙𝑘 is simply 𝜙−27𝑘 . When 𝑘 is understood, we suppress the subscript from our notation and
denote 𝜙𝑘 by 𝜙. Recall that 3-isogenies are degree-3 maps and therefore have kernel of size 3.
The 𝜙-torsion points of 𝐸𝑘 (respectively, 𝜙-torsion) are𝑂, 𝑇 , and −𝑇 (respectively,𝑂, (0, 3

√
−3𝑘),

and (0,−3
√
−3𝑘)).

3. Binary Cubic Forms á la Bhargava

Recall from Section 1 that the goal of this paper is to lay out a parametrization of the co-
homology group 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) by orbits of certain homogeneous polynomials called triply
symmetric binary cubic forms, which will be defined imminently. Let 𝑅 be a ring, and consider
the lattice Sym3(𝑅2) of binary cubic forms with integer coefficients, i.e., binary cubic forms

𝑎𝑥3 + 𝑏𝑥2𝑦 + 𝑐𝑥𝑦2 + 𝑑𝑦3

with 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅. For our intents and purposes, it will be more convenient to study the dual
lattice of Sym3(𝑅2): the lattice Sym3(𝑅2) of triply symmetric binary cubic forms

𝑎𝑥3 + 3𝑏𝑥2𝑦 + 3𝑐𝑥𝑦2 + 𝑑𝑦3

with 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅. Denote this lattice by 𝑉 (𝑅), and note that there is a natural GL2(𝑅)-action
on 𝑉 (𝑅) given by

𝑔 · 𝑓 (𝑥, 𝑦) = det(𝑔)−1 𝑓 ((𝑥, 𝑦)𝑔).
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We may associate to each form a natural invariant (that is, a polynomial in the coefficients in the
form that is invariant under the action of SL2(𝑅)) called its (reduced) discriminant: if 𝑓 (𝑥, 𝑦) =

𝑎𝑥3 + 3𝑏𝑥2𝑦 + 3𝑐𝑥𝑦2 + 𝑑𝑦3, then the discriminant is given by

disc( 𝑓 ) = −3𝑏2𝑐2 + 4𝑎𝑐3 + 4𝑏3𝑑 + 𝑎2𝑑2 − 6𝑎𝑏𝑐𝑑.2

Given 𝑔 ∈ GL2(𝑅), we have that

disc(𝑔 · 𝑓 ) = det(𝑔)6disc( 𝑓 ),

so the discriminant is indeed an invariant of 𝑓 . For a subset 𝑈 of 𝑉 (𝑅), let 𝑈𝑑 denote the set of
forms in𝑈 with discriminant 𝑑.

Having established the requisite notation, we now state the parametrization in question:

Theorem 3.1 ([2] Theorem 27). There is a canonical bijection between 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) and the
SL2(𝐹)-orbits of 𝑉4𝑘 (𝐹). The SL2(𝐹)-stabilizer of any 𝑓 in 𝑉4𝑘 (𝐹) is isomorphic to 𝐸−27𝑘 [𝜙] (𝐹).

At the heart of Theorem 3.1 is a parametrization of what are essentially 3-torsion ideals in
certain quadratic extensions of 𝐷 by SL2(𝐷)-orbits of binary cubic forms, where 𝐷 is a Dedekind
domainwith characteristic not 2 or 3. In his seminal thesis, Bhargava astounded themathematical
community by offering a series of “higher composition laws,” parametrizations of several families
of arithmetic objects by simpler and more familiar objects, such as 2× 2× 2 cubes of integers [1].
Among these results is a parametrization of 3-torsion ideal classes in quadratic extensions of Z,
which is a special case of the following.

Let 𝐷 be a Dedekind domain with char(𝐷) ∉ {2, 3} and field of fractions 𝐹. Given 𝑘 ∈ 𝐹∗,
let 𝑆𝑘 = 𝐷 [𝑧]/(𝑧2 − 𝑘) ≃ 𝐷 [

√
𝑘] and 𝐾𝑘 = 𝐹 [𝑧]/(𝑧2 − 𝑘) ≃ 𝐹 (

√
𝑘). When 𝑘 is understood, we

suppress it from our notation and denote 𝑆𝑘 and 𝐾𝑘 by 𝑆 and 𝐾 , respectively. A fractional ideal of
𝑆 is a finitely generated 𝑆-submodule of 𝐾 that spans 𝐾 over 𝐹. To each fractional ideal, we may
associate a fractional ideal of 𝐷 via the following procedure. Consider 𝐼 and 𝑆 as 𝐷-modules in 𝐾 .
Because 𝐷 is Dedekind, for each prime 𝔭 of 𝐷 we have that the localization at 𝔭—denoted 𝐷\𝔭 so
as to avoid confusion with the completion at 𝔭—is a principal ideal domain. Since 𝐼 is fractional,
we have that 𝐼\𝔭 ≃ 𝐾\𝔭 ≃ 𝑆\𝔭 as 𝐷\𝔭-modules. Choose an isomorphism 𝜓𝔭 : 𝑆\𝔭 → 𝐼\𝔭 of
𝐷\𝔭-modules, and let 𝜓̂𝔭 denote its extension to 𝐹\𝔭. Set

[𝑆\𝔭 : 𝐼\𝔭] = det(𝜓𝔭)𝐷\𝔭.

Note that the ideal [𝑆\𝔭 : 𝐼\𝔭] does not depend on choice of isomorphism 𝜓𝔭, since choosing any
other isomorphism simply changes the determinant by a unit. Define the norm of 𝐼 relative to 𝑆
to be

[𝑆 : 𝐼] =
⋂
𝔭

[𝑆\𝔭 : 𝐼\𝔭],

where the intersection runs over all primes of 𝐷. It is immediate from the definition of the ideal
norm that the ideal norm of a principal ideal generated by an element 𝛼 in 𝐾 is simply the ideal
of 𝐹 generated by the element norm of 𝛼, which we denote using 𝑁 (𝛼).

We are now properly algebraically equipped to define the arithmetic objects parametrized by
binary cubic forms:

2Note that the reduced discriminant is not the usual polynomial discriminant; rather, it is straightforwardly verified
that disc( 𝑓 ) = −3−3Disc( 𝑓 ), where Disc( 𝑓 ) denotes the usual discriminant.
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Definition 3.2. A triple (𝐼, 𝛿, 𝑠) consisting of a fractional ideal 𝐼 of 𝑆, element 𝛿 ∈ 𝐾∗, and
element 𝑠 ∈ 𝐹∗ is said to be valid if 𝐼3 ⊂ 𝛿𝑆, the norm of 𝐼 relative to 𝑆 is the principal ideal
[𝑆 : 𝐼] = 𝑠𝐷 in 𝐹, and 𝑁 (𝛿) = 𝑠3. We define an equivalence relation on valid triples by setting
(𝐼, 𝛿, 𝑠) and (𝐼′, 𝛿′, 𝑠′) to be equal if there exists a 𝜅 in 𝐾∗ such that 𝐼′ = 𝜅𝐼 , 𝛿′ = 𝜅3𝛿, and
𝑠′ = 𝑁 (𝜅)𝑠.

On one side of our bijection are equivalence classes of balanced triples; on the other are
SL2(𝐷)-orbits of 𝑉 (𝐷)4𝑘 , i.e., SL2(𝐷)-orbits of triply symmetric binary cubic forms with coef-
ficients in 𝐷 and discriminant 4𝑘 . Given a valid triple (𝐼, 𝛿, 𝑠), we can construct an element of
𝑉 (𝐷)4𝑘 as follows. Because 𝑆 ≃ 𝐷 [

√
𝑘], we may express 𝑆 as a 𝐷-module as 𝐷 + 𝐷

√
𝑘 . Now, we

leverage the fact that [𝑆 : 𝐼] = 𝑠𝐷 is assumed to be principal to elicit a 𝐷-module basis of 𝐼 . This
implies that 𝑆 and 𝐼 are isomorphic as 𝐷-modules; thus, we may write 𝐼 = 𝐷𝛼 + 𝐷𝛽 for some
𝛼, 𝛽 ∈ 𝐼 .3 The validity of (𝐼, 𝛿, 𝑠) implies that 𝐼3 ⊂ 𝛿𝑆, so we have

𝛼3 = 𝛿(𝑐0 + 𝑎0
√
𝑘)

𝛼2𝛽 = 𝛿(𝑐1 + 𝑎1
√
𝑘)

𝛼𝛽2 = 𝛿(𝑐2 + 𝑎2
√
𝑘)

𝛽3 = 𝛿(𝑐3 + 𝑎3
√
𝑘),

(2)

where the 𝑎𝑖’s and 𝑐𝑖’s are all in 𝐷. To the valid ideal (𝐼, 𝛿, 𝑠) we associate the form
𝑓 (𝑥, 𝑦) = 𝑎0𝑥3 + 3𝑎1𝑥2𝑦 + 3𝑎2𝑥𝑦2 + 𝑎3𝑦3.

Note that changing (𝛼, 𝛽) to some other 𝐷-module basis of 𝐼 would simply transform 𝑓 by the
corresponding element of SL2(𝐷). Equivariantly, if 𝜋 denotes the natural map 𝑆 → 𝑆/𝐷 ≃ 𝐷

√
𝑘 ,

we may regard 𝑓 as

𝑓 (𝑥, 𝑦) = 𝜋
(
(𝛼𝑥 + 𝛽𝑦)3

𝛿

)
,

which factors through the map 𝐼 ⊗ 𝐼 ⊗ 𝛿−1𝐼 → 𝑆/𝐷 given by 𝑢 ⊗ 𝑣 ⊗ 𝛿−1𝑤 ↦→ 𝜋(𝑢𝑣𝑤/𝛿).
If 𝐼 = 𝑆, 𝛼 = 1, and 𝛽 =

√
𝑘 , then (2) implies that the corresponding form is 𝑓𝑆 (𝑥, 𝑦) =

3𝑥2𝑦 + 𝑘𝑦3, which has discriminant 4𝑘 . For a general valid triple (𝐼, 𝛿, 𝑠), we know that there
is an element 𝑔 ∈ GL2(𝐹) relating the basis (1,

√
𝑘) (of 𝐾 as an 𝐹-vector space) to the basis

(𝛼, 𝛽). The form corresponding to this general (𝐼, 𝛿, 𝑠) is given by regarding 𝑓𝑆 as a map from
𝑆 → 𝑆/𝐷, which factors through 𝑆 ⊗ 𝑆 ⊗ 𝑆 → 𝑆/𝐷, and applying 𝑔 the first two factors of 𝑆 in
𝑆 ⊗ 𝑆 ⊗ 𝑆 and applying 𝛿−1𝑔 to the last factor. The discriminant of the resulting form is simply
det(𝑔)6𝑁 (𝛿)−2disc( 𝑓𝑆). Note that the ideal in 𝐷 generated by det(𝑔) is simply [𝑆 : 𝐼], whose
cube is 𝑁 (𝛿) by hypothesis. It follows that the discriminant of the form corresponding to (𝐼, 𝛿, 𝑠)

3The curious reader might wonder whether a similar result holds for fractional ideals in an arbitrary quadratic
extensions of a Dedekind domain. Indeed, Bhargava parametrizes triples (𝑆, 𝐼, 𝛿) consisting of a quadratic ring
extension 𝑆 of Z, a fractional ideal 𝐼 of 𝑆, and an element 𝛿 of 𝑆 ⊗ Q such that 𝐼3 ⊂ 𝛿𝑆 and 𝑁 (𝛿)𝑆. Notably, his
result permits all quadratic extensions of Z, not only those of the form Z[

√
𝑘] for 𝑘 ∈ Z. While it is beyond the

scope of this paper, such a generalization does exist and is one of the results of my senior thesis. The methods used
to construct the bijection in this paper fail because the class group interferes: a general quadratic extension 𝑆 of 𝐷
is not always isomorphic (as a 𝐷-module) to 𝐷 ⊕ 𝐷; rather, a theorem of Steinitz tells us that 𝑆 can be written as
𝐷 ⊕ 𝔞 for any ideal 𝔞 representing an invariant of 𝑆 called its Steinitz class. The 𝐷-module isomorphism class of 𝑆
is entirely determined by its rank and this Steinitz ideal class of Cl(𝑅). In this scenario, more work must be done to
construct the parametrization.
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is equal to disc( 𝑓𝑆) = 4𝑘 . Hence, any form corresponding to a valid triple has discriminant 4𝑘 ,
allowing us to state the following theorem:

Theorem 3.3 ([2] Theorem 18). For each 𝑘 ∈ 𝐹∗, the construction outlined in the above gives a
canonical bijection

Φ𝑘 : {equivalence classes (𝐼, 𝛿, 𝑠) of valid ideals of 𝑆]} −→ SL2(𝐷)\𝑉 (𝐷)4𝑘 .
Under this bijection, the stabilizer in SL2(𝐷) of 𝑓 in 𝑉 (𝐷)4𝑘 is isomorphic to 𝑆(𝐼)∗ [3]𝑁=1, where
𝑆(𝐼) is the ring of 𝑆-module endomorphisms of 𝐼 .

Proof. That Φ𝑘 is a bijection follows from emulating the proof of Theorem 13 in [1]; we omit
this for the sake of brevity. To see that the stabilizer of 𝑓 ∈ 𝑉 (𝐷)4𝑘 in SL2(𝐷) is isomorphic to
𝑆(𝐼)∗ [3]𝑁=1, suppose 𝑓 corresponds to (𝐼, 𝛿, 𝑠), and regard 𝑓 as the map

𝐼 ⊗ 𝐼 ⊗ 𝛿−1𝐼 → 𝑆/𝐷.
The elements of 𝐾∗

𝑁=1 preserving this map are precisely 𝑆(𝐼)∗ [3]𝑁=1. □

We will be particularly interested in Theorem 3.3 when 𝐷 = 𝐹. Of particular importance in
this scenario is the restriction of scalars group scheme Res𝐾

𝐹
(𝜇3). For an 𝐹-algebra 𝐴, we have

that Res𝐾
𝐹
(𝜇3) (𝐴) = 𝜇3(𝐴 ⊗𝐹 𝐾). From this description, we see that the 𝐹-points of Res𝐾

𝐹
(𝜇3)

are simply 𝜇3(𝐾), that is, the cube roots of unity in 𝐾 . The 𝐾-points of Res𝐾
𝐹
(𝜇3) are given

by 𝜇3(𝐾 ⊗𝐹 𝐾), which is isomorphic to 𝜇3(𝐾) ⊗ 𝜇3(𝐾) via the map 𝑎 ⊗ 𝑏 ↦→ (𝑎𝑏, 𝑎𝜎(𝑏)),
where 𝜎 : 𝐾 → 𝐾 is the involution taking

√
𝑘 ↦→ −

√
𝑘 . Because 𝐹 ⊂ 𝐾 , there is an inclusion

Res𝐾
𝐹
(𝜇3) (𝐹) ↩→ Res𝐾

𝐹
(𝜇3) (𝐾) given by 𝑎 ↦→ (𝑎, 𝜎(𝑎)). The norm map 𝑁 : 𝐾 → 𝐹 gives us

a norm map 𝑁 : Res𝐾
𝐹
(𝜇3) → 𝜇3. On the 𝐹-points, the norm map is simply the element norm

𝜇3(𝐾) → 𝜇3(𝐹); on the 𝐾-points, the norm map takes (𝑎, 𝑏) ↦→ 𝑎𝑏. Note that the restriction
of the norm map to the copy of Res𝐾

𝐹
(𝜇3) (𝐹) contained in Res𝐾

𝐹
(𝜇3) (𝐾) agrees with the norm

map on 𝜇(𝐾). For a subgroup 𝐺 of Res𝐾
𝐹
(𝜇3), let 𝐺𝑁=1 denote the subgroup of elements of 𝐺

with norm 1. These descriptions of Res𝐾
𝐹
(𝜇3) (𝐾) are immaterial at the moment, but they will be

necessary when elliptic curves return in the next section.

Corollary 3.4. For 𝑘 ∈ 𝐹∗, the bijection Φ𝑘 yields a natural bijection between the set of SL2(𝐹)-
orbits on 𝑉 (𝐹)4𝑘 and the group (𝐾∗/𝐾∗3)𝑁=1. Under this bijection, the stabilizer of 𝑓 in 𝑉 (𝐹)4𝑘 is
isomorphic to Res𝐾

𝐹
(𝜇3) (𝐹)𝑁=1.

Proof. Apply Theorem 3.3 to 𝐷 = 𝐹. Then 𝑆 = 𝐾 = 𝐹 (
√
𝑘), which is either a field or isomorphic

to 𝐹 × 𝐹. In either case, there is only one fractional ideal of 𝑆 (the ring 𝑆 itself), so valid triples
are of the form (𝑆, 𝛿, 𝑠) with 𝛿 ∈ 𝐾∗ and 𝑁 (𝛿) = 𝑠3. Up to equivalence, we see that a valid triple
corresponds to an element 𝛿 of 𝐾∗/𝐾∗3 with 𝑁 (𝛿) ∈ 𝐹∗3. The statement involving the stabilizer
follows immediately. □

We can make the correspondence of Corollary 3.4 quite explicit. Let 𝛿 ∈ (𝐾∗/𝐾∗3)𝑁=1. Writing
𝛿 = 𝑎 + 𝑏

√
𝑘 so that 𝑎2 + 𝑘𝑏2 = 1, (2) in conjunction with Corollary 3.4 implies that the form

corresponding to 𝛿 is 𝑓 (𝑥, 𝑦) = −𝑏𝑥3 + 3𝑎𝑥2𝑦 − 3𝑏𝑘𝑥𝑦2 + 𝑘𝑎𝑦3.

4. Cubic Forms and Cohomology

Having completed our lengthy excursion investigating the deep connection between valid
triples of 𝑆 and binary cubic forms, we now return to the setting of elliptic curves with 𝑗-invariant
0. Let 𝐹 be a field. Recall the elliptic curves 𝐸𝑘 and 𝐸−27𝑘 from Section 2, which are dual to each
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other via the 3-isogenies 𝜙 : 𝐸𝑘 → 𝐸−27𝑘 and 𝜙 : 𝐸−27𝑘 → 𝐸𝑘 . Of crucial importance are the pair
of quadratic étale algebras over 𝐹,

𝐾 = 𝐹 [𝑧]/(𝑧2 − 𝑘) ≃ 𝐹 (
√
𝑘) and 𝐾̂ = 𝐹 [𝑧]/(𝑧2 + 27𝑘) ≃ 𝐹 (

√
−3𝑘),

over which 𝐸𝑘 (𝐾) and 𝐸−27𝑘 (𝐾) contain 𝐸𝑘 [𝜙] and 𝐸−27𝑘 [𝜙], respectively.
With this in mind, it should not be surprising that the 𝐺𝐹-cohomology of 𝐸−27𝑘 and the

arithmetic of 𝐾 are intimately connected, and this connection can be made precise as follows.
Because 𝐸𝑘 and 𝐸−27𝑘 are dual to each other, there is nondegenerate pairing

⟨ , ⟩ : 𝐸−27𝑘 [𝜙] ⊗ 𝐸𝑘 [𝜙] → 𝜇3

defined in exactly the same manner as the Weil pairing on integral torsion points. We define a
map of groups 𝜄 : 𝐸−27𝑘 [𝜙] → Res𝐾

𝐹
(𝜇3) (𝐾) given by
𝑃 ↦→ (⟨𝑃,𝑇⟩, ⟨𝑃,−𝑇⟩)

(recall from Section 2 that ±𝑇 = (0,±
√
𝑘) are the nontrivial 𝜙-torsion points of 𝐸𝑘 ).

Theorem 4.1 ([2] Proposition 24). The map 𝜄 : 𝐸−27𝑘 [𝜙] → Res𝐾
𝐹
(𝜇3) (𝐾) is an injective group

homomorphism and image equal to ker(Res𝐾
𝐹
(𝜇3) (𝐾) → 𝜇3(𝐾)). In other words,

𝐸−27𝑘 [𝜙] ≃ ker(Res𝐾𝐹 (𝜇3) (𝐾) → 𝜇3(𝐾)).
This induces an isomorphism

𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) ≃ (𝐾∗/𝐾∗3)𝑁=1,
where (𝐾∗/𝐾∗3)𝑁=1 denotes the kernel of the norm map 𝐾∗/𝐾∗3 → 𝐹∗/𝐹∗3.

Proof. Verifying that 𝜄 is a group homomorphism is a straightforward manipulation. Its injec-
tivity follows from the nondegeneracy of the Weil pairing, and we see that its image is con-
tained in ker(Res𝐾

𝐹
(𝜇3) (𝐾) → 𝜇3(𝐾)) because ⟨𝑃,𝑇⟩⟨𝑃,−𝑇⟩ = ⟨𝑃,𝑂⟩ = 1. That 𝐸−27𝑘 [𝜙] ≃

ker(Res𝐾
𝐹
(𝜇3) (𝐾) → 𝜇3(𝐾)) follows immediately by counting.

For the second statement, consider the short exact sequence of groups

0 𝐸−27𝑘 [𝜙] Res𝐾
𝐹
(𝜇3) (𝐹) 𝜇3(𝐹) 0,

where the third arrow is the norm map. Applying Galois cohomology with 𝐺𝐹 gives us a long
exact sequence

0 {𝑂} 𝜇3(𝐾) 𝜇3(𝐹)

𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) 𝐻1(𝐺𝐹 , 𝜇3(𝐾)) 𝐻1(𝐺𝐹 , 𝜇3(𝐹)) · · ·

𝑁

𝜕

𝑁

By the Galois cohomology of the Kummer sequence, we know that 𝐻1(𝐺𝐹 , 𝜇3(𝐾)) ≃ 𝐾∗/𝐾∗3

and 𝐻1(𝐺𝐹 , 𝜇3(𝐹)) ≃ 𝐹∗/𝐹∗3, and the map between them is the usual element norm. The ex-
actness of the above implies that 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) is isomorphic to the kernel of the norm map
𝐾∗/𝐾∗3 → 𝐹∗/𝐹∗3. □

Remark 4.2. In this section, we just as well could have chosen 𝜙 and 𝐾̂ and proven analogous
results for 𝐸𝑘 [𝜙] and Res𝐾̂

𝐹
(𝜇3). Simply make the change of variable 𝑘 ↦→ −27𝑘 to generate the

statements of these results.
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Applying Galois cohomology to the sequence 0 → 𝐸−27𝑘 [𝜙] → 𝐸−27𝑘 → 𝐸𝑘 → 0 induces a
map

𝜕 : 𝐸𝑘 (𝐹) → 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) ≃ (𝐾∗/𝐾∗3)𝑁=1.
Explicitly, if (𝑥, 𝑦) ∈ 𝐸𝑘 (𝐹) \ 𝐸𝑘 [𝜙] (𝐹), then 𝜕 (𝑥, 𝑦) = 𝑦 +

√
𝑘 . We also have 𝜕 (±𝑇) = ±1/(2𝜏).

A more detailed account is given in Section 14 of [6]. Combining Corollary 3.4 and Theorem 4.1,
implies Theorem 3.1, which we restate for convenience.

Theorem 4.3. There is a canonical bijection between 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) and the SL2(𝐹)-orbits of
𝑉4𝑘 (𝐹). The SL2(𝐹)-stabilizer of any 𝑓 in 𝑉4𝑘 (𝐹) is isomorphic to 𝐸−27𝑘 [𝜙] (𝐹).

While Theorem 3.1 gives a parametrization of𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]), recall that our ultimate goal
is to study Sel𝜙 (𝐸−27𝑘 ). To that end, let 𝑉 (𝐹)sol denote the set of forms in 𝑉 (𝐹) corresponding
to cohomology classes in 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) in the image of the connecting map 𝜕 : 𝐸𝑘 (𝐹) →
𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) for some 𝑘 ∈ 𝐹∗. Call the elements of 𝑉 (𝐹)sol soluble. Under the bijection of
Theorem 3.1, the orbits of 𝑉 (𝐹)sol correspond to 𝐸𝑘 (𝐹)/𝜙(𝐸−27𝑘 (𝐹)):
Corollary 4.4 ([2] Corollary 28). There is a canonical bijection between the SL2(𝐹)-orbits on
𝑉 (𝐹)sol4𝑘 and the elements of 𝐸𝑘 (𝐹)/𝜙(𝐸−27𝑘 (𝐹)), under which the identity element of the group
𝐸𝑘 (𝐹)/𝜙(𝐸−27𝑘 (𝐹)) corresponds to the unique SL2(𝐹)-orbit of reducible binary cubic forms in
𝑉 (𝐹)sol4𝑘 , namely, the orbit of 𝑓 (𝑥, 𝑦) = 𝑘𝑥3 + 3𝑥𝑦2.

The moniker soluble may initially seem out of place, but it is explained by the following
theorem, which reveals the fundamental connection between forms 𝑓 ∈ 𝑉 (𝐹)4𝑘 in the image of
the connecting homomorphism 𝜕 : 𝐸𝑘 (𝐹) → 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) ≃ (𝐾∗/𝐾∗3)𝑁=1 and 𝐹-rational
points on a 𝜙-coverings of 𝐸𝑘 .

Theorem 4.5. Given a form 𝑓 ∈ 𝑉 (𝐹)4𝑘 , its corresponding cohomology class in 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙])
lies in the image of 𝜕 : 𝐸𝑘 (𝐹) → 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) ≃ (𝐾∗/𝐾∗3)𝑁=1 if and only if the variety
𝐶 𝑓 : 𝑧3 = 𝑓 (𝑥, 𝑦) in P2 has an 𝐹-rational point.

Proof. Given 𝑓 ∈ 𝑉 (𝐹)4𝑘 , Corollary 3.4 tells us that there is some element 𝛿 ∈ (𝐾∗/𝐾∗3)𝑁=1
corresponding to the SL2(𝐹)-orbit of 𝑓 . If 𝛿 is in the image of 𝜕, then 𝛿 = 𝜕 (𝑢, 𝑣) = 𝑣 −

√
𝑘 for

some (𝑢, 𝑣) ∈ 𝐸𝑘 (𝐹). The corresponding form is 𝑔(𝑥, 𝑦) = 𝑥3 + 3𝑣𝑥2𝑦 + 3𝑏𝑘𝑥𝑦2 + 𝑘𝑣𝑦3, so 𝑓

is SL2(𝐹)-equivalent to this form. We see that 13 = 𝑔(1, 0), implying that 13 = 𝑓 (𝑥, 𝑦) has an
𝐹-rational point.

Conversely, if 𝑧3 = 𝑓 (𝑢, 𝑣) for 𝑢, 𝑣, 𝑧 ∈ 𝐹, then 1 = 𝑓 (𝑢/𝑧, 𝑣/𝑧), and we may assume 𝑧 = 1.
Then by (2)

(𝑢 + 𝑣
√
𝑘)3 = 𝛿(𝑔(𝑢, 𝑣) + 𝑓 (𝑢, 𝑣)

√
𝑘) = 𝛿(𝑔(𝑢, 𝑣) +

√
𝑘)

for some 𝛿 ∈ 𝐾∗ with 𝑁 (𝛿) = 𝑠3 for 𝑠 ∈ 𝐹 and binary cubic form 𝑔 with coefficients in 𝐹. Taking
the norm of both sides of the above equation, we see that

𝑁 (𝑢 + 𝑣
√
𝑘)3 = 𝑠3(𝑔(𝑢, 𝑣)2 − 𝑘).

Hence, (𝑁 (𝑢 + 𝑣
√
𝑘)/𝑠, 𝑔(𝑢, 𝑣)) is a point of 𝐸𝑘 (𝐹), and 𝜕 (𝑁 (𝑢 + 𝑣

√
𝑘)/𝑠, 𝑔(𝑢, 𝑣)) = 𝑔(𝑢, 𝑣) −

√
𝑘

and 𝛿 belong to the same class of (𝐾∗/𝐾∗3)𝑁=1 because

𝛿 =
(𝑢 + 𝑣

√
𝑘)3

(𝑔(𝑢, 𝑣) +
√
𝑘)

= (𝑔(𝑢, 𝑣) −
√
𝑘) (𝑢 + 𝑣

√
𝑘)3

𝑔(𝑢, 𝑣) − 𝑘 = (𝑔(𝑢, 𝑣) −
√
𝑘)

(
(𝑢 + 𝑣

√
𝑘)𝑠

𝑁 (𝑢 + 𝑣
√
𝑘)

)3
.

Therefore, 𝑓 (𝑥, 𝑦) corresponds to an element in the image of 𝜕. □
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Recall that 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]) is in bijection with the group of isomorphism classes of 𝜙-
coverings of 𝐸𝑘 , i.e., isomorphism classes of maps of curves 𝐶 → 𝐸𝑘 over 𝐹 that are twists of
𝜙 (that is, the map 𝐶 → 𝐸𝑘 becomes isomorphic to 𝜙 over an algebraic closure 𝐹). Given 𝛿 ∈
(𝐾∗/𝐾∗3)𝑁=1 ≃ 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]), we may construct the corresponding 𝜙-covering as follows.
Let 𝑠 ∈ 𝐹 be such that 𝑁 (𝛿) = 𝑠3; let 𝑓 be the corresponding binary cubic form given by applying
Corollary 3.4. We take𝐶 𝑓 to be the vanishing locus of 𝑧3 = 𝑓 (𝑥, 𝑦) in P2. There is a map𝐶 𝑓 → 𝐸𝑘
given by [𝑢 : 𝑣 : 𝑧] ↦→ ((𝑢2 − 𝑘𝑣2)/𝑠, 𝑔(𝑢, 𝑣)), where 𝑔(𝑢, 𝑣) is the binary cubic form from the
proof above this paragraph. We see that this is exactly the 𝜙-covering map corresponding to 𝛿.
Note that it is this correspondence between 𝜙-coverings and binary cubic forms that lies at the
heart of our parametrization.

Up to this point, while we have constructed a parametrization of 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]), we have
not yet laid out a parametrization of Sel𝜙, which sits as a subgroup of 𝐻1(𝐺𝐹 , 𝐸−27𝑘 [𝜙]). Using
Theorem 4.5, we are now able to elicit the desired correspondence. Let 𝑉 (𝐹)loc. sol denote the set
of locally soluble triply symmetric binary cubic forms with coefficients in 𝐹. By this we mean the
forms 𝑓 ∈ 𝑉 (𝐹) such that 𝐶 𝑓 : 𝑧3 = 𝑓 (𝑥, 𝑦) has a nontrivial solution over 𝐹𝑣 for every place 𝑣 of
𝐹. The following is an immediate consequence of Theorem 3.1, Corollary 3.4, and Theorem 4.5.

Theorem 4.6. Given 𝑘 ∈ 𝐹∗, there is a bijection between the SL2(𝐹)-orbits on 𝑉 (𝐹)loc. sol of dis-
criminant 4𝑘 and the elements of Sel𝜙 (𝐸−27𝑘 ) corresponding to the isogeny 𝜙−27𝑘 : 𝐸−27𝑘 → 𝐸𝑘 .
The identity element of Sel𝜙 (𝐸−27𝑘 ) corresponds to the unique SL2(𝐹)-orbit of reducible binary cubic
forms, that is, the orbit of 𝑓 (𝑥, 𝑦) = 𝑘𝑥3 + 3𝑥𝑦2. The SL2(𝐹)-stabilizer of any 𝑓 ∈ 𝑉 (𝐹)loc. sol4𝑘 is
isomorphic to 𝐸−27𝑘 [𝜙] (𝐹).

5. Historical Contextualization and Counting Methods

The connections between 𝜙-Selmer groups and binary cubic forms are historic and were ini-
tially investigated by Selmer himself [17]. This relationship was further fleshed out in the work
of Cassels, Satgé, and Liverance [6, 16, 15]. Using Satgé’s work, Fouvry deduced the bound-
edness of the average rank of elliptic curves over Q with 𝑗-invariant 0 using Davenport and
Heilbronn’s seminal paper in which they compute the average size of the 3-torsion subgroups
of class groups of quadratic fields [12, 10]. The Davenport–Heilbronn method involves counting
integer-coefficient binary cubic forms in order to generate a count of cubic fields of bounded dis-
criminant; applying class field theory allows for the transformation of the result on cubic fields to
one about the 3-torsion in class groups of quadratic fields. Later, Bhargava and Varma used one
of Bhargava’s higher composition laws (a special case of Theorem 3.3) and a count of triply sym-
metric integral binary cubic forms to more directly count the 3-torsion ideal classes in quadratic
fields—a new and more direct way of accessing the classical results of Davenport and Heilbronn
[4]. By analogy, this led Bhargava, Elkies, and Shnidman to suspect that a similar, more direct
correspondence between 𝜙-Selmer groups and binary cubic forms might be within reach; this
hunch was realized as Theorem 3.1.

Theorem 3.1 reduces the computing the average size of Sel𝜙 (𝐸𝑘 ) to counting certain orbits
of binary cubic forms of bounded discriminant; the solution to this second problem is a straight-
forward application of methods developed by Davenport [8, 9]. Essentially, one proceeds by
constructing a fundamental domain for the action of SL2(Z) on 𝑉 (R) using the Iwasawa decom-
position of SL2(R). Then 𝑉 (Z) sits as a lattice inside this fundamental domain, and Davenport’s
lemma tells us that the number of lattice points inside this fundamental domain is given by its vol-
ume plus a negligible error term [7]. Once this count of SL2(Z)-orbits on𝑉 (Z) has been given, we
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apply sieve methods developed by Davenport and Bhargava–Shankar to obtain a formula for the
count in terms of a product of local densities, which may be computed explicitly using Tamagawa
numbers and Tate’s algorithm.

6. Implications

Having proved Theorem 4.6, we now list the plethora of beautiful results that it ultimately
implies. Describing the techniques used to generate these results in detail is beyond the scope of
this paper—the point of this section is to illustrate the types of results Theorem 4.6 unlocks.4

First, we take 𝐹 = Q and order the 𝐸𝑘 ’s in the natural way (by the absolute value of 𝑘).5 Let

𝑟 =
103 · 229

2 · 32 · 72 · 13
∏

𝑝≡5 mod 6

(1 − 𝑝−1) (1 + 𝑝−1 + 5𝑝−2/3 + 𝑝−3 + 5𝑝−4/3 + 𝑝−5)
1 − 𝑝−6 .

We may approximate the product in the above by 1.0337, so 𝑟 ≈ 2.1265. Then we have:
Theorem 6.1 ([2] Theorem 1). The average size of the 𝜙𝑘 -Selmer group is 1+ 𝑟 if 𝑘 is negative and
1 + 𝑟/3 if 𝑘 is positive.
Using the approximation from above, we see that the average size of the 𝜙𝑘-Selmer group is
approximately 3.1265 when 𝑘 is negative and 1.7088 when 1 + 𝑟/3 is positive. The methods used
to deduce Theorem 6.1 give further insight into the 3-Selmer rank of 𝐸𝑘 and the average rank of
𝐸𝑘 :
Theorem 6.2 ([2] Theorem 10). For each 𝑚 ≥ 0, a positive proportion of elliptic curves 𝐸𝑘 : 𝑦2 =
𝑥3 + 𝑘 with 𝑘 ∈ Z have 3-Selmer rank 𝑚.

Theorem 6.3 ([2] Theorem 5). The (limit supremum of the) average rank of the elliptic curves over
Q with 𝑗-invariant 0 is less than 1.29.

It follows immediately that a positive proportion of the 𝐸𝑘 ’s must have rank 0 or rank 1. The
methods used to deduce Theorem 6.3 are strong enough to give lower bounds on the proportion
of curves having rank 0 or 1. It turns out that the majority of the curves over Q with 𝑗-invariant
0 have rank 0 or 1:
Theorem 6.4 ([2] Theorems 6, 7, and 8). At least 19.9% of elliptic curves 𝐸𝑘 with 𝑘 ∈ Z have rank
0. At least 41.1% of elliptic curves 𝐸𝑘 with 𝑘 ∈ Z have rank 1. Thus, at least 61% of all such curves
have rank 0 or 1.

Now, recall that Theorem 3.1 and Theorem 4.6 hold for any field whose characteristic is not
2 or 3. The prior theorems are all over Q and do not realize the full power of the parametrization
from Section 4. To that end, we have the following theorems:
Theorem 6.5. Let 𝐹 be a number field such that 𝜇3 ⊄ 𝐹. Order the elliptic curves 𝐸𝑘 , where
𝑘 ∈ 𝐹∗/𝐹∗6, by the height of 𝑘 . The average rank of the 𝐸𝑘 over 𝐹 is bounded. A positive proportion
of curves 𝐸𝑘 have 3-Selmer rank 0 over 𝐹 and thus also Mordell–Weil rank 0. A positive proportion
of curves 𝐸𝑘 have 3-Selmer rank 1 over 𝐹.

Theorem 6.6. Let 𝐹 be a number field such that 𝜇3 ⊂ 𝐹. Order the elliptic curves 𝐸𝑘 , where 𝑘 ∈
𝐹∗/𝐹∗6, by the height of 𝑘 . Then the average size of the Selmer groups Sel𝜙𝑘 (𝐸𝑘 ) and Sel𝜙 (𝐸−27𝑘 )
over 𝐹 is 2. The average rank of the curves 𝐸𝑘 is at most 1; at least 50% of the 𝐸𝑘 have rank 0 over
𝐹.
4For a brief description, see Section 5.
5Ordering the 𝐸𝑘 ’s by 𝑘 is simply ordering them by height.
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